Kampus Teknik Elektro Medik
Selamat Datang diBLOG Mata Kuliah Teknik Elektro Medice di kelola oleh: Mardiana, S.T.

Jumat

MATERI TEORI
ANALISA OUTPUT
RANGKAIAN LOGIKA

Tujuan
Mahasiswa diharapkan dapat menganalisa output rangkaian logika menggunakan teorema aljabar bolean
Materi
1. Pendahuluan ( 3 - 1 )
2. Teorema Aljabar Bolean ( 3 - 3 )
3. Teorema Demorgan ( 3 - 3 )
4. Teorema Multivariabel ( 3 - 4 )
5. Operasi Logic OR ( 3 - 5 )
6. Operasi Logic AND ( 3 - 5 )
7. Soal Latihan ( 3 - 7 )
8. Ekivalen Gate Logika NAND ( 3 - 8 )
9. Ekivalen gate Logika NOR ( 3 - 9 )
10 Pemakaian IC gate logika Dasar dalam rangkaian logika ( 3 - 11 )

1. Pendahuluan
Alat–alat digital dan rangkaian digital bekerja dalam system bilangan biner, yaitu semua variable rangkaian adalah satu atau nol. Karakteristik dari alat digital ini membuatnya mungkin menggunakan aljabar bolean sebagai suatu alat matematik untuk menganalisa dan mendesain rangkaian dan system digital.
Perbedaan utama antara aljabar bolean dan aljabar biasa adalah bahwa dalam aljabar bolean konstanta-konstanta dan variabelnya hanya dimungkinkan mempunyai dua harga yaitu 0 dan 1
Istilah yang digunakan secara sinonim untuk menyatakan bilangan yang sebenarnya adalah Logic - 0 dan logic -1 adalah

Salah (false) Benar ( true)
Mati ( OFF) Hidup (ON)
Tidak( NO) Ya (yes)
Terbuka (Open) Tertutup (close)

Contoh rangkaian dan menganalisa output rangkaian


Jika A = 1 , B = 0 C = 1 D = 0
Maka
X = A B + B C + C D
X = 1.0 + 1.1 + 0. 0
X = 1




2. Teorema Aljabar Bolean



3. Teorema Demorgan


A + B = A . B

A . B = A + B

A. B + A B = B

Kesimpulan

A + 1 = 1
A + 0 = A
A + A = A
A + A = 1

A . 1 = A
A . 0 = 0
A . A = A
A . A = 0

4. Teorema Multivariabel

A. B + A B = B
( X + Y) = X . Y
( X . Y ) = X + Y

5. Operasi OR
Misalkan A dan B menyatakan dua variable logika bebas , apabila A dan B dikombinasikan dengan menggunakan operasi OR, hasilnya x dapat dinyatakan sebagai berikut : X= A + B
Teorema Boleaan berkaitan dengan operasi OR adalah :
X+0 = X
X+1 = 1
X+X = X
X+ = 1
Teorema Multivariabel :
X + Y = Y + X
X+(Y+Z)=(X+Y)+Z= X+Y+Z
X+XY=X

6. Operasi AND
Misalkan A dan B menyatakan dua variable logika bebas , apabila A dan B dikombinasikan dengan menggunakan operasi AND, hasilnya x dapat dinyatakan sebagai berikut : X= A . B
Teorema Boleaan berkaitan dengan operasi AND adalah
X .0 = 0
X .1 = X
X .X = X

Teorema Multivariabel :
X.Y = Y.X
X(YZ)=(XY)Z=XYZ
Teorema Demorgan


Menguraikan Rangkaian Logika Secara Aljabar


Penyelesaian :

X1 = A.B + C
X2 =

Misalkan :

A = 1, B = 1, C = 0 maka X1 = 1
A = 0, B = 1, C = 1, D = 0 maka X2 = 0







7. Soal Latihan :

7.1 Tulislah Ekpresi Boolean untuk output X pada gambar dibawah ini. Tentukanlah semua harga X untuk semua keadaan input yang mungkin dan tulislah dalam suatu truth table.


(a)



(b)

7.2 Tentukanlah level output dari rangkaian gambar a dan b untuk kasus berikut ini :
1. A= 1 B=0
2. A=1 B=0 C=1

7.3 Untuk Ekspresi berikut in, susunlah rangkaian logika yang sesuai, dengan menggunakan AND Gate, OR gate dan inverter
1. X =
2. Z=
3. Y=

4. Sederhanakanlah ekspresi berikut :
Y =
Z =


8. Ekivalen Gate Logika NAND
Gerbang NAND dapat dibentuk dari gerbang AND dengan output dinvers
Dapat dibentuk dengan gerbang OR, kedua input diberi inverter






9. Ekivalen gate Logika NOR
Dapat dibentuk dari gerbang OR, dengan output di invers
Dapat dibentuk dengan gerbang AND, kedua input diberi inverter

9.1 Persamaan Output NOR



9.2 Rangkaian Ekivalen EX -OR




Output X

A B + A B

9.3 Rangkaian Ekivalen EX NOR


Output X

A B + A B










10. Pemakaian IC gate logika Dasar dalam rangkaian logika
10.1 Rangkaiain menggunakan IC TTL Gerbang AND

Contoh -1
Rangkaiain menggunakan IC TTL Gerbang OR



Contoh -2
Rangkaian Menggunakan IC CMOS Gate AND

Contoh - 3
Rangkaian Menggunakan IC CMOS Gate OR

Contoh -5
Rangkaian IC TTL Gerbang NAND

Contoh – 6
Rangkaian Menggunakan IC TTL NOR , Untuk IC TTL 7425 gerbang NOR, Input IG dihubungkan ke VCC ( Eable )


Contoh -7
Rangkaian EX-OR menggunakan IC TTL 7486




Rangkaian Ekivalen EX-NOR

Contoh - 8
Rangkaian EX-NOR menggunakan IC TTL 74266









11. Rangkaian percobaan



Output LED akan hidup atau berlogika satu jika kedua input A dan B berlogika satu atau Input A logika satu sedangkan B berlogika 0 Kemudian Output akan berlogika 0 jika input A logika 0 dan B logika 1

GATE LOGIKA DASAR

MATERI TEORI
GATE LOGIKA DASAR


Tujuan :
• Mahasiswa dapat menyebutkan berbagai jenis Gate Logika dasar, simbol dan truth tabel
• Mahasiswa dapat mengetahui dan menggambarkan Pin Diagran IC logika ( IC TTL dan CMOS )
• Mahasiswa dapat menganalisa Output rangkaian Logika Dasar
• Mahasiswa dapat menggunakan IC gate logika Dasar dalam rangkaian logika

Materi :
1. Berbagai Jenis Gate Logika dasar, simbol dan truth tabel ( 2-1 )
2. Pin Diagran IC logika ( IC TTL dan CMOS ) ( 2-7 )



Uraian Materi
1. Berbagai jenis Gate Logika dasar, simbol dan truth tabel
1.1 Symbol yang digunakan untuk menunjukan gate logika adalah :
• Tradisional Simbol
• ANSI & IEEE Standard Logic Symbols
American National Standards Instiutute ( ANSI ),
Electrical and Electronic Engineers Standard Institute ( IEEE )

• AND



• OR





• INVERTER




• NAND






• NOR


• EX-OR








• EX-NOR




1.2 Truth Table Gate logika AND dan Ekivalen

B A X
0 0 0
0 1 0
1 0 0
1 1 1

Gate ( Gerbang ) Logika AND adalah gerbang yang akan memberikan keluaran ( output ) berlogika 1 bila semua inputnya diberikan logika 1, dan akan memberikan keluaran logika 0 jika satu diantara inputnya berlogika 0




Ekivalen

1.3 Truth Table Gate logika OR dan Ekivalen
Truth Table Gate logika OR

B A X
0 0 0
0 1 1
1 0 1
1 1 1

Gate ( Gerbang ) Logika OR adalah gerbang yang akan memberikan keluaran ( output ) berlogika 1 bila satu diantara inputnya atau semua input berlogika satu, dan akan memberikan keluaran ( output ) berlogika 0 bila semua inputnya diberikan logika 0.
Ekivalen

1.4 Truth Table Gate logika NOT dan Ekivalen

A X
0 1
1 0

Gate ( Gerbang ) Logika NOT adalah gerbang yang akan mempunyai satu masukan dan satu keluaran, dimana keluarannya selalu berlawanan dengan masukannya. Jika input 0 maka outputnya 0 atau sebaliknya jika input 1 maka output logika 0

Ekivalen

1.5 Truth Table Gate logika NAND

B A X
0 0 1
0 1 1
1 0 1
1 1 0

Jika semua input diberikan logika 1, maka output akan berlogika 0, untuk kondisi yang lain output akan berlogika 1

1. 6 Truth Table Gate logika NOR

B A X
0 0 1
0 1 0
1 0 0
1 1 0

Penjelasan
Jika semua input diberikan logika 0, maka output akan berlogika 1, untuk kondisi yang lain output akan berlogika 0

1.7 Truth table Gate Logika EX-OR

B A X
0 0 0
0 1 1
1 0 1
1 1 0

Output dari gerbang Ex-OR akan berlogika 1 jika kedua inputnya berbeda, sedangkan untuk kondisi yang lain outputnya akan nol.
1.8 Truth table Gate Logika Ex-NOR
B A X
0 0 1
0 1 0
1 0 0
1 1 1

Output dari gerbang Ex-NOR akan berlogika 1 jika kedua inputnya sama , sedangkan untuk kondisi yang lain outputnya akan nol.

2. Pin Diagran IC logika ( IC TTL dan CMOS )
2.1 Pin diagram Gate Logika AND TTL
Perhatikan pin diagram IC 7408, didalam IC tersebut terdapat empat fungsi AND gate dua input . Sebagai input adalah A dan B, sedangkan outputnya adalah Y ( Contoh : Input 1A,1B, Output 1Y Input 2A,2B, Output 2Y )


2.2 Pin Diagram IC logika AND MOS
Perhatikan pin diagram IC 4073, didalam IC tersebut terdapat tiga fungsi AND gate tiga input . Sebagai input adalah I , sedangkan outputnya adalah O
Contoh
Input I1, I2,I3 Output O1
Input I4, I5,I6 Output O2
Input I7, I8,I9 Output O2


2.3 Pin diagram Gate Logika OR IC TTL
Perhatikan pin diagram IC 7408, didalam IC tersebut terdapat empat fungsi OR gate dua input . Sebagai input adalah A dan B, sedangkan outputnya adalah Y
Contoh
Input 1A,1B, Output 1Y
Input 2A,2B, Output 2Y
Input 3A,3B, Output 3Y
Input 4A,4B, Output 4Y


Pin Diagram IC logika OR IC CMOS

2.4 Pin diagram Gate Logika Inverter IC TTL

2.5 Pin Diagram IC logika Inverter IC MOS

2.6 Pin Diagram IC TTL NAND Gate

2.7 Pin Diagram IC TTL Gerbang NOR


2.8 Pin diagram Gate Logika Ex-OR, IC TTL dan CMOS

2.9 Pin diagram Gate Logika EX-NOR, IC TTL dan CMOS

Sistem Bilangan

MATERI TEORI
SISTIM BILANGAN DAN KODE


Tujuan :
• Mahasiswa dapat mengetahui sistem bilangan dan kode.
• Mahasiswa dapat mengetahui konversi bilangan dan kode kedalam bilangan lainnya
• Mahasiswa dapat melakukan perhitungan arithmatik menggunakan sistem bilangan
• Mahasiswa dapat mengaplikasikan sistem bilangan dalam rangkaian Digital
Materi
1. Pendahuluan ( 1 - 1 )
2. Bilangan Decimal ( 1 - 3 )
• Konversi bilangan Decimal ke Biner
• Konversi bilangan Decimal ke Octal
• Konversi bilangan Decimal ke Hexadecimal
3. Bilangan Biner ( 1 - 4 )
• Konversi Bilangan Biner ke Decimal
• Konversi Bilangan Biner ke Octal
• Konversi Bilangan Biner ke hexadecimal
4. Bilangan Octal ( 1 - 5 )
• Konversi Bilangan Octal ke Decimal
• Konversi Bilangan Octal ke Biner
• Konversi Bilangan Octal ke Hexadecimal
5. Bilangan hexadecimal ( 1 - 6 )
• Konversi Bilangan hexadecimal ke Biner
• Konversi Bilangan hexadecimal ke Octal
• Konversi Bilangan hexadecimal ke Decimal

6. Kode Bilangan ( 1 - 6 )
• Kode Exces-3
• Kode Gray
• Kode BCD ( Binari Code Decimal )
• Kode ASCII
7. Operasi Arithmatik ( 1 - 8 )
• Operasi Penjumlahan
• Operasi Pengurangan

1. Pendahuluan
Dalam sistem-sistem digital informasi numeric dinyatakan dalam sistem bilangan dan pengkodean antara lain :
• Bilangan Biner ( bilangan dasar 2 )
• Bilangan Octal ( bilangan dasar 8 )
• Bilangan hexadecimal ( bilangan dasar 16 )
• Kode Gray
• Kode BCD
• Kode Excess-3
• ASCII Code

Contoh bilangan tersebut dapat dilihat dalam tabel berikut

Decimal Biner Octal Hexa Decimal
0 0000 00 00
1 0001 01 1
2 0010 02 2
3 0011 03 3
4 0100 04 4
5 0101 05 5
6 0110 06 6
7 0111 07 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Contoh bilangan lainnya

25 (10) = 11001 (2) = 31 (8) = 19 (16 )
75 (10) = 1001011 (2) = 113 (8) = 4B (16 )
325 (10) = 101000101 (2) = 505 (8) = 145 (16 )
494 (10) = 111101110 (2) =756 (8) = 1EE (16 )
487 (10) = 111100111 (2) = 747 (8) = 1E7 (16 )
Dalam materi berikut akan dijelaskan pengetian bilangan, konversi bilangan menjadi bilangan lainnya, serta pemakaian dalamoperasi arithmatik.

2. Bilangan Decimal
Bilangan decimal adalah bilangan dengan bilangan dasar 10. Posisi dari bilangan decimal yang mengandung bit dapat diberikan contoh pada bagian berikut .
525 = 5 x 102 + 2 x 10 1 + 5 x 100
= 5 x 100 + 2 x 10 + 5 x 1
= 500 + 20 + 5
= 525

2.1 Konversi bilangan Decimal ke Biner

25 / 2 = 12 + sisa 1
12/ 2 = 6 + sisa 0
6/2 = 3 + sisa 0
3/2 = 1 + sisa 1
½ = 0 + sisa 1


25 Decimal = 1 1 0 0 1



2.2 Konversi bilangan Decimal ke Octal


46 / 8 = 5 + sisa 6
5 / 8 = 0 + sisa 5




46 Decimal = 5 6

2.3 Konversi bilangan Decimal ke Hexadecimal

172 / 16 = 10 + sisa 12
10 / 16 = 0 + sisa 10




46 Decimal = 10 12 = AC

3. Bilangan Biner
3.1 Konversi Bilangan Biner ke Decimal
11011 = 1 x 24 + 1 x 23 + 0 x 22 +1 x 21 +1 x 20
= 16 + 8 + 0 + 2 + 1
= 27 bilangan decimal

101.101 = 22 + 20 +2-1 + 2-3
= 4 + 1 + 0.5 + 0.125

Soal latihan dan Jawaban
Konversikan bilangan biner berikut menjadi bilangan decimal
100110 = 38
0.110001 = 0.765625
11110011.0101 = 243.3125



3.2 Konversi Bilangan Biner ke Octal
11011 = 11 011 = 33 (dikelompokaan tiga bit dari kanan ke kiri )
Soal latihan dan Jawaban
100110 = 100 110 = 4 6
110001 = 110 001 = 6 1
11110011 = 11 110 011 = 3 6 3

3.3 Konversi Bilangan Biner ke hexadecimal
11011 = 1 1011 = 1 B
( dikelompokaan empat bit dari kanan ke kiri )

4. Bilangan Octal
4.1 Konversi Bilangan Octal ke Decimal
113 = 1x 8 2 + 1 x 8 1 + 3 x 8 0
= 64 + 8 + 3
= 75

4.2 Konversi Bilangan Octal ke Biner
675 = 110 111 101

4.3 Konversi Bilangan Octal ke Hexadecimal
675 = 1 1011 1101 = 1 B D
5. Bilangan hexadecimal
5.1 Konversi Bilangan hexadecimal ke Biner
23B = 0010 0011 1011
5.2 Konversi Bilangan hexadecimal ke Octal
23B = 001 000 111 011
5.3 Konversi Bilangan hexadecimal ke Decimal
23B = 2 x 16 2 + 3 x 16 1 + 11 x 16 0
= 512 + 48 + 16
= 576
6. Kode Bilangan
6.1 Tabel Code Bilangan

Desimal Digit Biner BCD Excess-3 Code
Gray
0 0000 0000 0011 0000
1 0001 0001 0100 0001
2 0010 0010 0101 0011
3 0011 0011 0110 0010
4 0100 0100 0111 0110
5 0101 0101 1000 0111
6 0110 0110 1001 0101
7 0111 0111 1010 0100
8 1000 1000 1011 1100
9 1001 1001 1100 1101

6.2 Konversi Bilangan Decimal ke Excess-3
Kode Excess-3 ada hubungannnya dengan kode BCD dan kadang-kadang digunakan menggantikan BCD karena mempunyai keuntungan dalam operasi –operasi aritmatik tertentu. Pengkodean Excess 3 untuk bilangan desimal dilaksanakan dengan cara yang sama seperti BCD kecuali bahwa angka 3 ditambahkan pada setiap digit decimal sebelum mengkodekan dalam biner.
Contoh
Bilangan 46
46 masing-masing bit ditambah 3 sehingga menjadi 79
maka kode excess-3 adalah = 0111 1001

6.3 Konversi dari biner ke Gray
Setiap bilangan biner dapat diubah menjadi representasi kode Gray dengan cara seperti berikut :
• Bit pertama dari code gray sama dengan bit pertama dari bilangan biner
• Bit kedua dari kode gray sama dengan exclusive OR dari bit pertama dan kedua dari bilangan biner ( akan sama dengan satu apabila kode biner tersebut berbeda, akan sama dengan 0 jika bit tersebut sama ).
• Bit kode gray ketiga sama dengan exclusive OR dari bit kedua dan ketiga dari bilangan biner, dan seterusnya.

1 0 1 1 0


1 1 1 0 1


6.4 Konversi dari Grey ke Biner
Untuk mengubah dari gray ke biner diperlukan prosedure yang berlawanan dengan prosedure konversi dari biner ke gray
• Bit biner pertama adalah sama dengan bit kode gray pertama
• Apabila bit gray yang kedua 0, bit biner kedua sama dengan yang bertama, apabila bit gray kedua 1, bit biner kedua adalah kebalikan dari bit biner pertama


1 1 0 1 1


1 0 0 1 0


6.5 Kode ASCII

000 001 010 011 100 101 110 111
0000 NUL DEL Space 0 @ P p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 „ 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EOT DC4 $ 4 D T d t
0101 END NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL ETB , 7 G W g w
1000 BS CAN ( 8 H X .h x
1001 VT ESC ) 9 I Y i y
1010 LF SUB * : J Z j z
1011 VT ESC + ; K k
1100 FF FS , < L l 1101 CR GS - = M m 1110 SO RS . > N n
1111 SI US / ? O o DLE

7. Operasi Arithmatik
7.1 Operasi Penjumlahan

11001 25
10010 18

1 01011 43


7.2 Operasi Pengurangan

9 1001
6 0110
3 0011

Tahapan
o Ubah bilangan pengurang menjadi komplemen ke –2
o Jumlahkan dengan data 9
o Komplemen pertama dari bilangan 6 = 1001
o Komplemen ke dua dari bilangan 6 = 1010
o Penjumlahan 1001 dengan 1010 = 0 0 1 1
o Dengan demikian hasil nya adalah 0011 = 03

7.3 Perkalian bilangan biner
Perkalian bilangan biner dilakukan dengan cara yang sama dengan cara perkalian bilangan desimal

1 0 0 1
1 0 1 1
1 0 0 1
1 0 0 1
0 0 0 0
1 0 0 1
1 1 0 0 0 1 1





7.4 Pembagian Biner

0011

11 1001 9 : 3 = 3


011
0011


7.5 Pemakaian sistem bilangan dalam pemograman

Address Mechine Code Menemonic Code Action
7000 06 30 MVI B, 30 B : 30
7002 0E 20 MVI C, 20 C : 20
7004 16 40 MVI D, 40 D : 40
7006 78 MOV A, B A : B : 30
7007 81 ADD C A : A + C : 50
7008 82 ADD D A : A + D : 90
7009 CF RST 1

7.6 Penjelasan Program
7.6.1 Register B diisi data 30.
7.6.2 Register C diisi data 20.
7.6.3 Register D diisi data 40.
7.6.4 Data yang ada pada register B dipindah ke register A, yang sekarang
register A berisi data 30.
7.6.5 Data pada register A dijumlahkan dengan data pada register C.
A = 30 + 20 = 50
7.6.6 Data pada register A dijumlahkan dengan data pada register D.
A = 50 + 40 = 90.
Pada program ditunjukan bahwa sejumlah instruksi mesin dalam kode hexa desimal, kemudian untuk melakukan penjumlah dilakukan dengan menggunakan kode ADD dalam hexa 82. Dengan demikian maka diperlukan pemahaman sistem bilangan untuk melakukan pemograman.

8. Soal latihan
8.1 Ubahlah bilangan-bilangan biner berikut menjadi bilangan decimal ekivalenya
8.1.1 10001101
8.1.2 10111.1011
8.1.3 0.011011
8.1.4 110111.101
8.1.5 10010001001
8.2 Ubahlah bilangan desimal berikut menjadi ekivalen binernya
8.2.1 37
8.2.2 189
8.2.3 72.45
8.2.4 0.4475
8.2.5 4097.188
8.2.6 52
8.2.7 205
8.3 Tambahkanlah grup bilangan biner berikut ini dengan menggunakan
penjumlahan biner
8.3.1 1010 + 1011
8.3.2 1111 + 0011
8.3.3 1011.1101 + 11.1
8.3.4 0.1011 + 01111

Sabtu

DOSEN TIDAK TETAP

1. DR. Rosliani, M.Hum
Dolok Sinuban
S1 : USU
S2 : USU
S3 : USU
Bahasa Indonesia

2. Jerry Wilson, S.SS, M.Hum
Padang Sidempuan
S1 : USU
S2 : USU
Sastra Inggris

3. dr. Tiur Ni Ari Sitompul, M.Sc 0007123202 Tanjung Pinang
S1 : Kedokteran
USU
S2 : Fisika Medik
Univ.England
Inggris Fisika Medik
4. dr.Arie Hasiholan Gultom, M.Ph 0122053301 Jakarta
22-05-1933 Lektor Kepala dr, M.Ph S1 : USU
S2 : University of
the Pilippines Kesehatan Masyarakat
5. Syahrul Humaidi, S.Si, M.Si 0017066501 Rantau Prapat
17-05-1965 Lektor Kepala S.Si, M.Si S1 : MIPA USU
S2 : UTM Malaysia Fisika
6. Ratna Simatupang, S.Pd, M.Pd 0116117704 Tarutung
16-11-1977 Lektor S.Pd, M.Pd S1 : UNIMED
S2 : UNIMED Matematika
7. Drs. Alking, M.Si 0006046307 Sumbawa
06-04-1963 Lektor Kepala Drs, M.Si S1 : Univ.Erlangga
S2 : Univ.Erlangga Ilmu Sosial
8. Humala Sialoon Sirait, SKM, M.Kes 0128013901 Pematangsiantar
28-01-1939 Lektor Kepala SKM, M.Kes S1 : FKM UI
S2 : UI Kesehatan Masyarakat
9. Meutia Fajar Sari Nasution, S.Psi, M.Si 0112058003 Medan
12-05-1980 Lektor S.Psi, M.Si S1 : UMA
S2 : USU Psikologi
10. Rusli Sarumpaet, S.Th - Huta Nagodang
20-06-1965 - S.Th S1 : STH.Inalta Agama Kristen
11. Drs. Lahmuddin Ritonga 0112025801 Sialang Gatap
12-02-1958 Lektor Kepala Drs S1 : IAIN Sumut Agama Islam

Struktur Akademi

Dosen Program Studi Teknik Elektro Medik ATEM Binalita Sudama, berdasarkan SK 034/DIKTI/Kep/2002.

DOSEN TETAP
No. Nama Dosen Tetap
NIDN** Tempat dan
Tanggal Lahir Jabatan
Akademik Gelar
Akademik Pendidikan S1, S2, S3
dan Asal Universitas Bidang Keahlian untuk Setiap Jenjang Pendidikan
(1) (2) (3) (4) (5) (6) (7) (8)
1. Drs. Imnadir, MT 0130116001 Sungai Tarab Tanah Datar
30-11-1960 Lektor Kepala Drs, MT S1 : IKIP Padang
S2 : ISTN Jakarta Elektronika
2. Tuful Zuchri, BE,ST 0115087102 Padang
15-08-1971 Asisten Ahli BE, ST DIII : ATEM Jakarta
S1 : UGM Teknik Elektro Medik
3. Zuhrina Kustanti, BE, ST, M.Kes 0124027201 Binjai
24-02-1972 Asisten Ahli BE, ST, M.Kes D III : ATEM YBS
Medan
S1 : UISU
S2 : FKM. UGM
Teknik Elektro Medik
4. Rizal Thalib,BE, ST 0105105701 Bukit Tinggi
05-10-1957 Asisten Ahli BE, ST DIII : ATRO Jakarta
S1 : UGM Teknik Elektro Medik
5. Adduha Reza Pahlevi, BE, ST 0111097103 Medan
11-09-1971 Asisten Ahli BE, ST D III : ATEM YBS
Medan
S1 : UNDIP Teknik Elektro Medik
6. Jamiandar Simamora, AMF,M.Pd 0101075606 Pasar Baru
01-07-1956 Asisten Ahli AMF, M.Pd D III : ATRO Jakarta
D IV : UNDIP
S2 : UNIMED
Teknik Elektro Medik
7. Khairul Bahri, BE, ST 0112036001 Medan
12-03-1960 Lektor BE, S.T D III : ATEM Jakarta
S1 : UMA Teknik Elektro Medik
8. Arman Rafli, AIM 0119055502 Medan
19-05-1955 Asisten Ahli AIM DIII : ATRO Jakarta
D-IV : UNDIP Teknik Elektro Medik
9. Amcer Sitorus, AIM 0101125301 Medan
01-12-1953 Lektor AIM D-III : ATRO Jakarta
D-IV : UNDIP Teknik Elektro Medik
10. Drs. Ibnu Hajar, MT 0105075815 Padang
05-06-1958 Lektor Kepala Drs, MT S1 : IKIP Padang
S2 : ISTN Jakarta Elektronika
11. Ns.Widyawati, S.Kep, M.Kes 0103127204 Medan
03-12-1972 Lektor S.Kep, M.Kes S1 : USU
S2 : USU Keperawatan
12. Drs. Fauzi, M.Si 0126045505 Surabaya
26-04-1955 Lektor Kepala Drs, M.Si S1 : USU
S2 : UI Fisika
13. Tirama Simbolon, S.Si, M.Si 0113097502 Sibontar
13-09-1975 Asisten Ahli S.Si, M.Si S1 : USU
S2 : USU Fisika Medik
14. Drs. Anwar, MT 0111015906 Padang
11-01-1959 Lektor Kepala Drs, MT S1 : IKIP Padang
S2 : ISTN Jakarta
Elektronika
15. Zuhrita Kustiwi, BE, ST 0113087301 Sunggal
13-08-1973 Asisten Ahli BE, ST D III : ATEM YBS
Medan
S1 : UISU Teknik Elektro Medik
16. Sopar Sihombing, BE, SKM 0107106701 Kutaraja Sidikalang
07-10-1967 Asisten Ahli BE, SKM D III : ATEM YBS
Medan
S1 : USU Teknik Elektro Medik

Kamis

IC Mikrokontroller AT89s51

Penggunaan IC AT 89S51 memiliki beberapa keuntungan dan keunggulan, antara lain tingkat kendala yang tinggi, komponen hardwere eksternal yang lebih sedikit, kemudahan dalam pemrograman. Dan hemat dari segi biaya. IC AT 89S51 memiliki program internal yang mudah untuk dihapus dan diprogram kembali secara berulang – ulang. Pada pesawat ini IC AT 89S51 berfungsi sebagai sentral control dari segala aktivitas pesawat. Mulai dari timer untuk mengontrol lamanya elektroda bekerja. Pada pesawat ini IC AT 89S51 ini juga dimanfaatkan sebagai pengubah suhu sensor suhu untuk dikonversikan dalam satuan kadar mineral yang ditampilkan dalam display berupa seven segment.



Gambar 5.5 IC AT 89S51

Beberapa fungsi dari kaki pin pada IC mikrokontroler AT89S51 yaitu :

1. Port 0

Port 0 adalah 8 bit open drain bi-directional port I/O. pada saat sebagai port output, tiap pin dapat dilewatkan ke-8 input TTL. Ketika logika satu dituliskan pada port 0, maka pin-pin ini dapat digunakan sebagai input yang berimpendansi tinggi. Port 0 dapat dikonfirmasikan untuk demultiplex sebagai jalur data/addres bus selama membaca ke program eksternal dan memori data. Pada mode ini P0 mempunyai internal Pullup. Port 0 juga enerima kode bytre selama pemograman Flash. Dan mengeluarkan kode byte selama verifikasi program.

2. Port 1

Port 1 adalah 8 bit bi-directional port I/O dengan internal Pullup. Port 1 mempunyai output yang dapat dihubungkan dengan 4 TTl input. Ketika logika ‘1’ dituliskan ke port 1, pin ini di pull hight dengan menggunakan internal pullup dan dapat digunakan sebagai input. Port 1 juga menerima addres bawah selama pemrograman Flash dab verifikasi.

3. Port 2

Port 2 adalah 8 bit bi directional port I/O dengan Pullup. Port 2 output buffer dapat melewatkan empat TTL input. Ketika logika satu dituliskan ke port 2, maka mereka dipull hight dengan internal Pullup dan dapat digunakan sebagai input.

4. Port 3

Port 2 adalah 8 bit bi directional port I/O dengan Pullup. Output buffer dari Port 3 dapat dilewati empat input TTL. Ketika logika satu dituliskan keport 3, maka mereka akan dipull hight dengan internal pullup dan dapat digunakan sebagai input. Port 3 juga mempunyai berbagai macam fungsi/fasilitas. Port 3 juga menerima beberapa sinyal kontrol untuk pemrograman Flash dab verifikasi.

5. RST

Input reset. Logika hight pada pin ini akan mereset siklus mesin (IC).

6. ALE/PROG.

Pulsa output Addres Latch Enable digunakan untuk lantching byte bawah dari addres selama mengakses ke eksternal memory. Pin ini juga merupakan input pulsa program selama pemrograman Flash. Jika dikehendaki, operasi ALE dapat didisable dengan memberikan setting bit 0 dari SFR pada lokasi 8EH. Dengan Bit Set, ALE disable, tidak akan mempengaruhi jika mikrokontroler pada mode eksekusi eksternal.

7. PSEN

Program Store Enable merupakan sinyal yang digunakan untuk membaca program memory eksternal. Ketika 8951 mengeksekusi kode dari program memory eksternal, PSEN diaktifkan dua kali setiap siklus mesin.

8. EA/VPP

Eksternal Acces Enable, EZ harus diposisikan ke GND untuk mengaktifkan divais untuk mengumpankan kode dari program memory yang dimulai pada lokasi 0000h sampai FFFFh. EA harus diposisikan ke VCC untuk eksekusi program internal. Pin ini juga menerima tegangan pemrograman 12 volt (Vpp) selama pemrograman Flash.

9. XTAL1

Input untuk oscillator inverting amplifier dan input untuk inte rnal clock untuk pengoperaian rangkaian.

10. XTAL2

Output dari inverting oscillator amplifier.
Membuat Program Ladder Diagram Konveyor Membuat Program PLC Pengepakan Apel
Share
Saat ditekan tombol START (PB1), maka dijalankan konveyor pembawa boks. Jika sensor boks (SE2) mendeteksi keberadaan boks maka konveyor pembawa boks akan dihentikan dan konveyor pembawa apel mulai dijalankan. Sensor apel (SE1) akan menghitung hingga 10 buah apel kemudian menghentikan konveyor pembawa apel (pencacah apel akan direset) dan proses dijalankan dari awal lagi demikian seterusnya hingga ditekan tombol STOP (PB2).
MEMBUAT PROGRAM LADDER DIAGRAM KONVEYOR | MEMBUAT PROGRAM PLC PENGEPAKAN APEL




Gambar Program Ladder Diagram Pengepakan Apel Pada Plc
Apa Sih Motor Stepper Itu?
Share
mo sidang tapi masi belom ngerti apa itu motor stepper...

padahal di rancangan, modul robot pake motor stepper unipolar 4 fase.
dapat eferensi bagus di salah satu blog mas Adjie.
neh,, buat baca2 untuk persiapan.

Motor step (stepper motor) adalah salah satu jenis motor DC yang dapat berputar pada langkah tetap dengan besar sudut tertentu. Tidak seperti motor DC biasa yang menghasilkan gerakan putaran kontinyu, motor step menghasilkan gerak putaran diskret (gerakan yang patah-patah) seperti terlihat pada Gambar 1. Besarnya sudut untuk tiap langkah bervariasi antara 0,9 hingga 900. Motor step digunakan pada aplikasi yang memerlukan perputaran pada sudut tertentu namun tidak memerlukan umpan balik dari sensor posisi. Sudut perpindahan dapat diketahui dengan menghitung jumlah langkah yang dilakukan dalam satu putaran.



Gambar 1 Perbedaan antara gerak motor step dengan gerak motor DC kontinyu.

Sumber Gambar : Grant, 2005

Motor step adalah satu-satunya jenis motor DC yang pengendaliannya dapat dilakukan secara open loop. Contoh penggunaan motor step dapat dilihat pada printer, scanner, dan floppy disk drive. Gambar 2 menunjukkan contoh dari suatu motor step.

Gambar 2 Bentuk fisik motor step

Berdasarkan konstruksinya motor step dapat dibagi menjadi dua, yaitu

Motor step magnet permanen (permanent magnet stepper motor). Motor step jenis magnet permanen dapat bergerak karena adanya interaksi antara magnet permanen dengan elektromagnet yang dihasilkan oleh arus elektrik. Saat tidak terhubung catu daya jika digerakan pada motor step jenis ini akan terasa adanya tahanan magnetik.

Motor step reluktansi variabel (variable reluctance stepper motor). Pada motor step jenis reluktansi variabel tidak terdapat magnet permanen, maka gerak dihasilkan oleh interaksi antar elektromagnet. Saat tidak terhubung catu daya motor step jenis ini tidak akan menghasilkan tahanan magnetik.

Untuk selanjutnya pembahasan difokuskan pada motor step magnet permanen. Gambar 3 menunjukkan konstruksi dasar dari suatu motor step, dalam hal ini jenis magnet permanen, yang terdiri dari rotor berupa magnet permanen dan stator berupa elektromagnet.



Gambar 3 Komponen motor step

Sumber gambar : Kilian, 2000

Berdasarkan polaritasnya motor step magnet permanen dapat dibedakan menjadi dua, yaitu unipolar (polaritas tunggal) dan bipolar (polaritas ganda). Gambar 4 menunjukkan rangkaian dari suatu motor step bipolar. Dari Gambar 4 terlihat bahwa setiap dua buah elektromagnet yang berseberangan sebetulnya adalah merupakan sebuah kumparan dan disusun sedemikian rupa sehingga jika kumparan dialiri arus kedua elektromagnet tersebut menghasilkan kutub yang berlawanan. Contohnya jika diberi polaritas A + dan B –, maka elektromagnet atas menghasilkan kutub Utara dan elektromagnet bawah menjadi kutub Selatan. Sedangkan jika polaritas dibalik menjadi A – dan B + maka kutub elektromagnet akan berkebalikan, elektromagnet atas menjadi Selatan dan elektromagnet bawah menjadi Utara. Jika diberi polaritas sama, A + dan B + atau A – dan B – maka elektromagnet atas dan bawah tidak aktif.



Gambar 4 Simbol dan diagram pengkabelan motor step bipolar.

Sumber gambar : Kilian, 2000

Terdapat beberapa metode untuk menggerakkan motor step bipolar. Metode yang paling sederhana adalah dengan bergantian mengaktifkan salah satu kumparan (AB atau CD), yang disebut metode satu fase aktif atau sering disebut juga wave mode, seperti ditunjukkan pada Gambar 5.




Gambar 5Metode satu fase aktif pada motor step bipolar

Sumber : SGS-Thomson Microelectronics, 1995

Metode berikutnya adalah metode dua fase aktif dengan mengaktifkan kedua kumparan. Pada metode ini magnet pada rotor akan tertarik oleh dua elektromagnet yang bersebelahan, sehingga posisinya selalu berada di antara dua elektromagnet, seperti terlihat pada Gambar 6.



Gambar 6 Metode dua fase aktif pada motor step bipolar

Sumber : SGS-Thomson Microelectronics, 1995

Metode satu fase aktif dan metode dua fase aktif sering disebut juga mode langkah penuh (full step) untuk membedakan dengan mode setengah langkah (half step). Mode setengah langkah menggabungkan antara metode satu fase dan metode dua fase, sehingga dihasilkan jumlah langkah dua kali lipat lebih banyak dalam satu putaran dibanding kedua mode langkah penuh. Motor step dapat menghasilkan 4 langkah saat mode langkah penuh dan 8 langkah saat mode setengah langkah.



Gambar 7 Mode setengah langkah pada motor step bipolar

Sumber : SGS-Thomson Microelectronics, 1995

Untuk menghasilkan jumlah langkah yang lebih banyak, maka pada suatu motor step tidak hanya terdapat empat elektromagnet, tapi dapat berjumlah lebih banyak Meski demikian untuk memudahkan pengaturannya, setiap elektromagnet tidak diatur secara individu, namun terdapat beberapa elektromagnet yang disatukan pengaturannya seperti tergambar pada gambar 8.





Gambar 8 Jumlah langkah gerak motor step ditentukan oleh banyaknya elektromagnet.

Untuk dapat menghasilkan kombinasi medan magnet sesuai metode yang digunakan, diperlukan kombinasi sinyal pada masing-masing input motor step. Untuk motor step bipolar kombinasi sinyal yang diberikan pada masing-masing kumparan untuk mode langkah penuh terdapat pada Tabel 1 dan Tabel 2 sedangkan untuk mode setengah langkah terdapat pada Tabel 3.

Tabel 1 Kombinasi sinyal motor step bipolar untuk mode langkah penuh (satu fase aktif)


Tabel 2 Kombinasi sinyal motor step bipolar untuk mode langkah penuh (dua fase aktif)



Tabel 3 Kombinasi sinyal motor step bipolar untuk mode setengah langkah.



Selain motor step bipolar terdapat juga motor step unipolar (polaritas tunggal). Disebut unipolar karena arus pada kumparan hanya mengalir pada satu arah, tidak seperti motor step bipolar yang dapat mengalir dua arah tergantung polaritas kumparan. Pada motor step unipolar masing-masing elektromagnet diatur secara terpisah seperti terlihat pada Gambar 9.


Gambar 9 Konstruksi motor step unipolar

Sumber gambar : Kilian, 2000

Gambar 10 menunjukkan varian dari motor step unipolar, yaitu enam kabel dan lima kabel.


Gambar 10 Simbol untuk varian motor step unipolar (a) enam kabel (b) lima kabel

Untuk motor step unipolar kombinasi sinyal yang diberikan pada masing-masing kumparan untuk mode langkah penuh terdapat pada Tabel 4 dan Tabel 5 sedangkan untuk mode setengah langkah terdapat pada Tabel 6.

Tabel 4 Kombinasi sinyal motor step unipolar untuk mode langkah penuh (satu fase aktif)


Tabel 5 Kombinasi sinyal motor step unipolar untuk mode langkah penuh (dua fase aktif)



Tabel 6 Kombinasi sinyal motor step unipolar untuk mode setengah langkah.
Cara Mengukur Komponen dengan Multimeter
Share
1. Menguji Kondensator

Caranya adalah dengan langkah-langkah berikut di bawah ini:

1. Mula-mula saklar multimeter diputar ke atas. Tanda panah ke atas tepatnya R x Ohm
2. Kalibrasi sampai jarum multimeter menunjukkan angka nol tepat saat dua colok (+) dan colok (-) dihubungkan. Putar adjusment untuk menyesuaikan.
3. Hubungkan colok (-) dengan kaki berkutub negatif kondensator, sedangkan colok (+) dengan kaki positif kondensator. Lihat jarum. Apabila bergerrak dan tidak kembali berarti komponen tersebut masih baik. Jika bergerak dan kembali tetapi tidak seperti posisi semula berarti komponen rusak. Dan apabila jarum tidak bergerak sama sekali dipastikan putus.


2. Menguji Resistor / Tahanan Tetap

Walaupun komponen ini tidak memiliki kutub negatif dan positif tetapi dengan multimeter kita akan menguji kualitasnya. Tidak menutup kemungkinan adanya kerusakan yang disebabkan oleh beberapa faktor, salah satu diantaranya karena terbakar/korsleting karena tidak tahan menahan arus yang lebih besar dari nilainya.

Untuk mengujinya dengan multimeter kita boleh membolak-balik kaki resistor ataupun sebaliknya membolak-balik colok (+) dan colok (-).

Langkah-langkah pemeriksaan resistor:

1. Memutar saklar sampai pada posisi R x Ohm.
2. Kalibrasi dengan menghubungkan colok (+) dan colok (-). Kemudian memutar penyetel sampai jarum menunjuk pada angka nol (0). Atau putar control adjusment untuk menyesuaikan.
3. Setelah itu kita hubungkan pencolok (+) pada salah satu kaki resistor, begitu pula colok (-) pada kaki yang lain.
4. Perhatikan jarum penunjuk. Apakah ia bergerak penuh atau sebaliknya jika bergerak dan tak kembali berarti komponen masih baik. Bila sebaliknya jarum penunjuk skala tidak bergerak berarti resistor rusak.
5. Komponen resistor yang masih baik juga bisa dinilai dengan sama atau tidak nilai komponen resistor yang tertera pada gelang-gelang warnanya dengan pengukuran melalui multimeter.


3. Menguji variabel kondensator

Menguji variabel kondensator bukan bertujuan untuk mengetahui tingkat kebocoran. Hal ini disebabkan ia tidak terbuat dari bahan-bahan seperti layaknya yang dipakai dalam pembuatan elco, kondensator keramik dan lain sebagainya.

Tujuan pengujian ini hanyalah untuk mengetahui hubungan/kontak langsung antara rotor dan stator. Jika keduanya berhubungan maka tidak dapat dipakai karena korsleting sehingga menimbulkan suara gemerisik pada radio. Biasanya varco ang demikian dapat diketahui dengan cara memutar-mutar varco guna memperoleh signal (gelombang) dan diiringi suara gemerisik yang lebih tajam dari suara pancaran pemancar.

Untuk mengetahui tingkat korsleting pada sebuah varco adalah dengan :

1. Pertama-tama memutar saklar multimeter pada posisi R x Ohm atau 1x dan K.
2. Kalibrasi seperti biasa.
3. Hubungkan colok (-) dan colok (+) pada masing-masing kaki.
4. Putar rotornya. Apabila jarum tak bergerak sama sekali berarti varco dalam keadaan baik. Jika bergerak-gerak maka komponen ini terjadi kontak langsung/korsleting.


4. Menguji Dioda

Komponen ini memiliki sepasang kaki yang mana masing-masing berkutub negatif dan positif. Oleh karena itu dalam menguji nanti hendaknya dilakukan dengan benar dan cermat. Tujuan pengujian alat ini adalah untuk mengetahui tingkat kerusakan akibat beberapa hal . Pada dioda yang pernah dipakai dalam suatu rangkaian biasanya disebabkan besarnya tekanan arus sehingga tidak mampu ditahan dan diubah menjadi DC.

Cara pengujian:

1. Saklar diputar pada posisi Ohmmeter, 1x dan Kalibrasi.
2. Hubungkan colok (-) dengan kaki negatif (anoda) dan colok (+) dengan kaki positif (katoda).
3. Kemudian pindahkan pencolok (-) pada kaki anoda dan colok (+) pada kaki katoda. Bila jarum bergerak berarti dioda tersebut rusak. Jika sebaliknya (tak bergerak) maka dioda dalam keadaan baik.


5. Menguji Transformator

Transformator saat kita beli harus dan wajib untuk kita check apakah masih baik dan berfungsi. Karena untuk trafo biasanya tidak diberi garansi apabila rusak setelah dibeli. Hal ini dimungkinkan adanya pemutusan hubungan di gulungan/lilitan sekunder atau primer.

Langkah-langkah:

1. Putar multimeter saklar pada posisi Ohm 1x.
2. Kalibrasi.
3. Hubungkan colok (-) dengan salah satu kaki di gulungan primer, colok (+) pada kaki yang lain di gulungan primer. Bila jarum bergerak maka trafo dalam keadaan baik.
4. Pada gulungan sekunder lakukan hal yang sama. Apabila jarum multimeter bergerak-gerak maka trafo dalam keadaan baik. Selisih nilai sama dengan selisih tegangan yang tertera pada trafo.
5. Letakkan colok (-) atau colok (+) ke salah satu kaki di gulungan primer kemudian colok yang lain ke gulungan sekunder. Apabila jarum tidak bergerak maka trafo dalam keadaan baik, menandakan tidak adanya korsleting gulungan primer dengan sekunder dengan body trafo. Lakukan hal sebaliknya.
6. Langkah terakhir, letakkan colok (-) atau colok (+) ke salah satu kaki di gulungan primer atau sekunder kemudian colok yang lain ke plat pengikat gulungan yang berada di tengah. Apabila jarum tidak bergerak maka trafo dalam keadaan baik, menandakan tidak adanya korsleting gulungan dengan body trafo.


Osciloskope adalah alat yang dapat mengukur besaran-besaran elektronika seperti tegangan ac maupun tegangan dc, frekuensi suatu sumber tegangan ac, dan beda fasa antara dua sumber tegangan yang berlainan, bahkan kita dapat melihat bentuk isyarat tegangan terhadap waktu. Pola-pola gelombang isyarat yang terlihat pada layar osiloskop sebenarnya adalah tumbukan-tumbukan elektron yang lepas dari sumber elektron di dalam tabung dengan layar, yang diatur sedemikian rupa oleh medan-medan yang dihasilkan keping-keping sejajar horizontal dan vertikal. Keping-keping ini menimbulkan medan listrik yang besarnya tergantung pada tegangan inputnya, sehingga bila ada elektron yang melewati diantara keduanya akan dibelokkan sesuai dengan besar tegangan inputnya, sehingga pada layar akan terlihat pola-pola isyarat dari isyarat masukan.

Tips Membeli Komponen Elektronika

Mungkin dalam membeli komponen adalah hal yang selalu kita lakukan sebelum kita mengerjakan rangkaian elektronika yang kita rancang menjadi sebuah alat. Ada beberapa tips buat kamu-kamu yang mau beli komponen.


1. Pertama-tama kita harus sudah mempunyai susunan rangkaian elektronika yang akan kita buat, lebih baik lagi kalau kita sudah mempunyai hasil layoutan-nya.



Tapi itu tergantung juga bagaimana cara kita melayout, ada yang melayout secara manual dengan melihat bentuk kaki dan ukuran komponen. Ada pula yang melayout komponen dengan software, jadi lebih praktis. Ukuran dan susunan kaki komponen sudah terprogram dalam software, tinggal print aja.


1. Listing komponen yang akan kita beli. Berapa jumlah dan ukuran nilai komponen tersebut. Prioritaskan komponen-komponen yang vital. Catat listing komponen tersebut agar lebih memudahkan dalam menge-ceknya kembali.
2. Apabila ada bagian tambahan seperti chasing alat atau hal lain selain komponen elektronika. Belilah saat terakhir, dimana semua komponen telah dibeli.
3. Apabila itu adalah pekerjaan kelompok. Lebih baik apabila kita membeli komponen secara kolektif/urunan. Jadi biaya pembelian bisa lebih murah, karena pasti ada diskon dari penjual. Kalau tidak ada, kita minta dunk, khan beli banyak ;p
4. Pada saat membeli komponen, usahakan kita membeli komponen di toko langganan kita. Atau paling tidak kita survei dulu harga komponen-komponen yang akan kita beli (tidak semuanya kita survei, yang penting aja).



Ex: Saya pernah membeli multitune per biji harganya Rp. 6000,00 tapi setelah jalan-jalan dan iseng2 tanya ke toko sebelah kok beda jauh ya. Di situ dijual Rp.4000,00. Jangan lupa minta tanda pembelian / bon / kwitansi.


1. Belilah komponen di toko yang spesifik menjual komponen elektronika yang kamu maksudkan. Ada beberapa toko elektronika yang hanya menjual komponen-komponen tertentu saja. Misalnya: toko trafo, toko kabel, toko mikrokontroller dan lcd matrix, dll.. Biasanya di toko seperti ini harga yang ditawarkan lebih murah dan terjamin.
2. Tanyalah pada penjual bagiamana kualitas komponen yang kamu beli. Karena biasanya komponen yang dijual di pasaran adalah kualitas no 5 ke bawah. Sebab komponen yang bagus kebanyakan adalah hasil import dan lain merk dan kualitas lain juga harga yang ditawarkan, walaupun itu hanya komponen sederhana seperti resistor, transistor maupun trafo. Komponen elektronika import biasanya dari jepang, amerika, korea, malaysia, dll.
3. Apabila ada komponen elektronika yang tidak kita temui saat berbelanja. Tanyalah persamaan komponen tersebut pada penjual atau cari melalui kamus persamaan komponen atau juga bisa melihat datasheet komponen yang bersangkutan. Kalau masih belum ada juga, pindah ke toko yang lain lagi … Kalau belum ketemu juga, wuihh … terpaksa kita ganti komponen itu dengan dengan komponen yang lainnya tanpa merubah susunan dan prinsip kerja alat.
4. Jangan lupa terakhir adalah membeli PCB dengan ferichlorit untuk tempat komponen kamu berdiri.
5. Timah solder ma pastanya jangan lupa euy …
6. Kalau semua sudah beres, kumpulkan kwitansi dari pembelian untuk mengkalkulasi pembelian kita dalam pembuatan sebuah rangkaian elektronika ini, jadi biar nggak boros-boros amat

Senin

STANDAR BUKU PEMBELAJARAN (PUSTAKA)
DIPLOMA III TEKNIK ELEKTROMEDIK

NO KELOMPOK JUDUL

I MPK
1. Pancasila 1.1. Pancasila dan UUD 45
1.2. Santiaji Pancasila, Darji Darmoharjo
1.3. Himpunan Tap MPR
1.4. Bahan Penataran Pegawai Negeri dan Referensi
1.5. Pancasila secara Ilmiah dan populer

2. Kewarganegaraan 2.1. Kewiraan untuk mahasiswa
2.2. Pendidikan Kewiraan
2.3. Wasantara - Lemhanas
2.4. Ketahanan Nasional - Lemhanas
2.5. UU No. 22 tahun 1999 ttg Otonomi Daerah
2.6. UU No. 22 tahun 1999 ttg Perimbangan kewantara Pusat
& Daerah
2.7. UU No. 28 ttg Proyek negara yang bersih & bebas dr korupsi
kolosi, nepotisme
2.8. UU No. 39 ttg hak azazi manusia

3. Agama 3.1. Agama dan Kebudayaan
3.2. Kelembagaan Agama
3.3. Beberapa Persoalan Agama
3.4. Perbandingan Agama
3.5. Dienul Islam

4. Bahasa Indonesia 4.1. Bahasa Indonesia
4.2. Kamus teknik
4.3. Ejaan yang disempurnakan
4.4. Kamus Bahasa Indonesia
4.5. Anatomi Bahasa

5. Bahasa Inggris 5.1. Kamus Inggris-Indonesia/ Indonesia - Inggris
5.2. English Sintence Stuctur
5.3. Facts for lafe A Commication Callenge
5.4. How To Prepare the TOEFL
5.5. Mosaic Lw II A content-Baaased gramer
5.6. Reader choice
5.7. Guided Composition

II MKK
1. Matematika Dasar 1.1. Matematika untuk teknik K.A. Stout
1.2. Aljabar Linier
1.3. Aljabar linier & Aplikasinya

2. Matematika Lanjut 2.1. Matematika teknik Lanjutan Erwin Kreyszig
2.2. Kalkulus & geometri Analitik Erwin j. Purcel
2.3. Transformasi laplace


3. Fisika Dasar I 3.1. Dasar-dasar Fisika Untuk Universitas Jilid 1 Marcello alonso
3.2. Fisika untuk universitas Jilid 1 Sears Zemansky
3.3. Fisika edisi mahasiswa Halliday Resnick
3.4. Seri fisika dasar jilid 1 Sutrisno
3.5. Seri Fisika Dasar jilid 3 Sutrisno




4. Fisika Dasar II 4.1. Dasar-dasar Fisika Untuk Universitas Jilid 2 Marcello alonso
4.2. Fisika untuk universitas Jilid 2 Sears Zemansky
4.3. Fisika edisi mahasiswa Halliday Resnick
4.4. Seri fisika dasar jilid 2 Sutrisno
4.5. Seri Fisika Dasar jilid 3 Sutrisno

5. Fisika Modern 5.1. Konsep Fisika Modern Arthur Beiser
5.2. Fisika Modern & Soal Ronald Gautrem, William saria

6. Kimia 6.1. Kimia Dasar I
6.2. Kimia Dasar II
6.3. Kimia Dasar III
6.4. Kimia untuk Unersity Jilid 1 dan 2
6.5. Operasi Teknik Kimia

7. Anatomi Fisiologi 7.1. Buku Ajar Fisiologi Kedokteran, Ganong Wiliam F,
Wijayakusumah M. Jauhari
7.2. Anatomi Klinik, Snell Richard S, Aji Darma
7.3. Anatomi dan fisiologi
7.4. Atlar Anatomi Manusia
7.5. Pengantar Psikologi

8. Ilmu Bahan 8.1. Material For Elektrical by Tarkeu
8.2. IEC (SNI)
8.3. Puil
8.4. Tranducer theory by John A alloca SeD
8.5. Hand Book of Electrical engineering by pendess
8.6. AEG Manual Service
8.7. Ilmu Bahan Listrik Depdiknas

9. Teknik Sistem 9.1. Teknik Kontrol Automatik I
9.2. Teknik Kontrol Automatik II
9.3. Sistem Pengaturan
9.4. Teknik Kontrol Automatik
9.5. Kunci Soal kontrol Automatic

10. Keselamatan Kerja 10.1. Keselamatan Kerja
10.2. K3RS
10.3. Proteksi Radiasi
10.4. Proteksi radiasi
10.5. Standar Keselamatan Listrik Medik
10.6. Standar Instalasi Listrik Medik

11. Epid Statistik & Metodologi Penelitian 11.1. Statistik Teori dan Aplikasi I Sutrisno
11.2. Statistik Teori dan Aplikasi II Sutrisno
11.3. Metode Analisis Penelitian Masri Singarimbun
11.4. Metode Statistik Dr. Sudjana MA. M.Sc.
11.5. Pengantar Epidemologi Prof. Dr. Azrul Azwar
III MKB
1. Rangkaian Listrik 1.1. Enginering Circuit Analisis
1.2. Analisis of Linier Circuit
1.3. Rangakain Listrik Schaum Series, Joseph A. Edminister
1.4. Elektrik Circuit
1.5. Arus Listrik Bolak - Balik Muhammad dan Sutanto
1.6. Network Analisis G.K. Mithal



2. Teknik Tenaga Listrik 2.1. Dasar-dasar Teknik tenaga Listrik dan Elektronika daya
2.2. Mesin Listrik
2.3. Pegangan Teknik Tenaga Listrik
2.4. Pengantar Teknik Tenaga Listrik
2.5. Desaining with TTL Integrated Circuits
2.6. Sistem Tenaga Listrik

3. Alat Ukur dan Pengukuran Listrik 3.1. Pengukuran dan alat ukur listrik
3.2. Sistem pengukuran aplikasi dan perancangan
3.3. Teknik Pengukuran Listrik dan Elektronika
3.4. Instrumentasi Elektronik dan Teknik Pengukuran Ed. 2
3.3. Pengukuran Listrik

4. Elektronika Dasar 4.1. Prinsip-prinsip Elektronika, Albert Paul Malvino Phd
4.2. Micro Electronica Midman
4.3. Dasar-dasar Elektronika
4.4. Ensiklopedia rangkaian elektronik

5. Elektronika lanjut 5.1. Operasional Ampifier&Linier Integrated Circuit
Coughlin Robert F Dtiseroll
5.2. Microelectronics Milman Jacob Gabriel Alvin
5.3. Data dan Persamaan Fet dan Mosfet
5.4. Elektronika

6. Elektronika Terapan 6.1. Elektronika Teori dan Penaerapan
6.2. Micro Prosessor dan interfacing
6.3. Data book microprosessor

7. Program Komputer 7.1. Computer, Dtoney RG How to Solvwd
7.2. Soft were engineering, Presman Roger
7.3. Fundamental of Computer Algoritme computer alogaritme
computer science press Horowitz, elis & Sataj Sahni
7.4. Stucture and Brijan Resigu, Haouse, Robert L raw
7.5. Reissal, Fordward M, Pascal Algirtlihed

8. Teknik Digital 8.1.Teknik Digital by Ibrahim
8.2. Introduction to Digital Techniques
8.3. Digital sistem logic and aplication

9. Microprosessor dan Mikro Komputer 9.1. Mac Kanzie I Scott the 8051 Microcontroller
9.2. Uffenbeck Jhon, the 8086/8088 design
9.3. Programing and interfacing

10. Teknik Mekanik 10.1. Teknologi Pejelasan Logam
10.2. Teknik Las Dasar

11. Perencanaan Sistem Jaringan RS 11.1. Hospital Planing hand book, rex whitm
11.2. Pedoman penyelenggaraan instalasi pemeliharaan
sarana rumah sakit kelas B
11.3 Pokok Pedoman artitekmedik RSU kelas C
11.4. Healt cara facilities hand book

12. Teknik Pencitraan Medik 12.1. Imaging Procesossor digital
12.2. Pengolahan Citra

13. Teknik Biomedis 13.1. Medical instrumentation application
13.2. Introduction to biomedical instrument
13.3. Introduction to biomedical engineering
13.4. Introduction to Biomedical equipment
13.5. Fisika Kedokteran




14. Managenent Rumah Sakit 14.1. Dasar-dasar Manajemen RS
14.2. Manajement Fungsi RS Direktorat Khusus & Swasta
Dirjen Yanmed
14.3. Manajement Theory & Practical Mc. Grawhill
14.4. Helat Planing For Effective Management (William A.R)

15. Radiografi 15.1. Marrils atlas of Radiography Riontioning and
Radiologi
15.2. Analitic Rontgen
15.3. Practical Radiography
15.4. Medical X-Ray Technic
15.5. Radiography fotography
15.6. Chesrey Radiography imaging

16. Menggambar Teknik 16.1. Menggambar teknik G. Takeshi sato, TL Sugiarto
16.2. Menggambar Bangunan Mesin
16.3. Direktorat Instalasi Medik Pokok-pokok pedoman -
Artistektur medik RSU kelas A, B, dan C

IV MPB

1. Radiologi Dasar 1.1. X-Ray Physics and equipment 2nd
1.2. Radiologic Science for technologists edisi 4
1.3. Fundamental physics of radiology 2nd
1.4. Medical X-Ray edisi 3
1.5. Radiasi Dosis rendah

2. Radiologi Lanjutan 1.1. X-Ray Physics and equipment 2nd
1.2. Radiologic Science for technologists edisi 4
1.3. Fundamental physics of radiology 2nd
1.4. Medical X-Ray edisi 3
1.5. Nuclear Radiation Detection

3. Radiologi Khusus 3.1. X-Ray Physics and equipment 2nd
3.2. Radiologic Science for technologists edisi 4
3.3. Fundamental physics of radiology 2nd
3.4. Medical X-Ray edisi 3

4. Radiologi Kedokteran Nuklir 4.1. X-Ray Physics and equipment 2nd
4.2. Radiologic Science for technologists edisi 4
4.3. Fundamental physics of radiology 2nd
4.4. Medical X-Ray edisi 3
4.5. Nuclear Medicine Instruments
4.6. Basics Principal of MRI


5. Elektromedik I 5.1. Service Manual alat elektromedik
5.2. Kardiologi
5.3. Principle of Biomedical
5.4. Bio Physical Miasurments peter shong
5.5. Introduction to biomedical equitment tecnologi
5.6. Medical Instrumentation
5.7. Handbook of biomedical instrumentation 1,2 Editor
chief Joseph D Bronzinu

6. Elektromedik II 6.1. Technical information for electrocity analizer
6.2. Review of Hemodyalisis for nurse and dialisis personal
C.E. Gutch
6.3. Medical Instrumentation and design


6.4. Diagnostic ultrasound physical and principals
6.5. Peralatan Anestesi
6.6. Aplication laser and system laser

7. Elektromedik III 7.1. EEG Technology
7.2. Alat USG
7.3. Pedoman Perawat Endeskopy
7.4. Instuduction to abomina to ultrasuonograhy

8. Laboratorium Dasar 8.1. Medical Instrumentation Aplicatinend Design, Webster
8.2. Medical Equipment
8.3. Introduction to Biomedical
8.4. Equipment Teknologi Jhon M. Brown, Joseph J. Carr
8.5. Introduction to Biomedical equipment technologi

9. Laboratorium Lanjut 9.1. Medical Instrumentation
9.2. Aplication and design, webster
9.3. Intruduction to Biomedical Equipment Technologi
John M. Brown
9.4. Medical Equipment


10. Tugas Akhir 10.1. Petunjuk membuat skripsi / Karya tulis

11. PKL 11.1. Petunjuk Pelaksanaan PKL Jur TEM

12. Instalasi dan Pernengkelan 12.1. Alat-alat dan komponen instalasi listrik
12.2. Teknik Listrik Instalasi Penerangan
12.3. Instalasi Listrik Arus Kuat1, 2

V MBB
1. Psikologi Dasar 1.1. Psikologi perkembangan pribadi dan bayi sampai lansia
Siti Rahayu Haditomo
1.2. Psikologi Sosial dan Theodora New Comb & Ralph Turner
1.3. Psikologi Pendidikan Sumadi Suryabrata
1.4. Psikologi Kerja
1.5. Psikologi Kepemimpinan

2. Ilmu Kesehatan Masyarakat 2.1. SKN Depkes RI
2.2. Kebijakan Kesehatan Indonesia 2010
2.3. Dasar Epidemologi
2.4. Pengantar Ilmu Kesehatan Masyarakat, dasar - dasar
dan Perkembangannya

3. Etika Profesi 3.1. Etika Profesi IKTEMI
3.2. Wajah baru Etika dan Agama
3.3. Prospek Etika kajian atas masalah aktual
3.4. Etika sosial lintas budaya
3.5. Landasan etika profesi

Selasa

UJIAN SEMESTER GANJIL T.P. 2010 – 2011
Subject : Komputer Dasar

I. Pilihan Berganda

1. Tombol Delete berfungsi untuk ….
a. Menghapus
b. Menyisipkan kata
c. Menggandakan kata
2. Tombol Caps Lock berfungsi untuk …
a. Membuat huruf kecil
b. Membuat huruf besar/kapital
c. Membuat huruf cantik
3. Shut down atau Trun Off adalah ….
a. Cara menonaktifkan komputer dengan baik
b. Cara mengaktifkan komputer dengan baik
c. Cara menyimpan komputer dengan baik
4. Ikon adalah …..
a. Gambar cantik yang dapat diklik.
b. Gambar kecil yang mewakili suatu perintah.
c. Gambar kecil yang tak berguna.
5. Hardware adalah…
a. Perangkat lunak
b. Peragkat keras
c. Perangkat otak
6. Program yang digunakan untuk menggambar di bawah ini adalah…
a. Paint
b. Word
c. Excel
7. Microsoft Excel adalah …
a. Pengolah angka
b. Pengolah kata
c. a dan b benar
8. Perintah menyimpan disebut ….
a. Open
b. Insert
c. Save
9. Alamat cells adalah …..
a. Perpotongan antara baris dan kolom
b. Perpotongan antara kolom dan baris
c. Perpotongan cell
10. Range adalah ….
a. Terdiri beberapa baris dan colom
b. Terdiri beberapa colom dan baris
c. A dan B benar
11. SUM berguna untuk ….
a. Mencari penjumlahan
b. Mencari pengurangan
c. Mencarai rata-rata
12. Di bawah ini adalah fungsi Statistik kecuali, …..
a. Sum, If, Min
b. Max, Min, Sum
c. Max, Average, Min
13. Penulisan rumus pada Excel yang benar adalah …
a. 3+4=
b. =4+3
c. =4X3
14. Menyisipkan symbol mata uang di Excel yaitu dengan menggunakan Format Cells Number  pilih category ……..  tentukan symbol mata uang  lalu OK.
a. General
b. Currency
c. Date
15. Copy berfungsi untuk …
a. Menghapus data
b. Memperbanyak data
c. Menyisipkan data


II. Isilah titik-titik di bawah ini dengan benar
1. Ikon adalah . …

2. Tombol Backspace berfungsi untuk …

3. Bagian Microsoft Office yang berguna untuk pengolah angka adalah …

4. Format Font berguna untuk ….

5. WordArt berguna untuk ….

III. Jawablah pertanyaan di bawah ini dengan benar.


1. Sebutkan 3 nama-nama Hardware dan Software yang kamu ketahui !
2. Jelaskanlah cara menonaktifkan (mematikan) komputer dengan benar!
3. Bagaimanakah cara menyimpan File? Jelaskan!
4. Jelaskan langkah-langkah membuka file!
5. Sebutkan bagian-bagian Microsoft Office dan kegunaannya! (minimal 3)
6. Tuliskan apa saja yang perlu diperhatikan dalam Microsoft Power Point !
7. Tuliskan Nama-nama Layout yang ada dalam Ms. Power Point
8. Tuliskan langkah- langkah membuat Text di depan Gambar
9. Tuliskan hal yang diperlukan untuk membuat Blog!
10. Tuliskan hal apa saja yg perlu di isi untuk membuat Akun Google!

Sabtu

Silabus Mata Kuliah Komputer Dasar

Menjelajah media penyimpanan dengan jaringan komputer serta multimedia
Mengenal Software pengolah kata dan menggunakan fitur umum menu standar
Mengedit dokumen menggunakan perangkat lunak pengolah kata
Memodifikasi dokumen menggunakan perangkat lunak pengolah kata
Pengenalan operasi system dan pengolah kata
Memodifikasi dokumen menggunakan bingkai, tanda symbol dan
Memodifikasi dokumen dalam perangkat lunak pengolah kata dengan menggunakan
Fasilitas penomoran, bingkai dan huruf awal besar dalam paragraf 
Hal yang perlu diperhatikan dalam Microsoft Power Point 
Nama-nama Layout yang ada dalam Ms. Power Point
Langkah- langkah membuat Text di depan Gambar
Hal yang diperlukan untuk membuat Blog

Hal yg perlu di isi untuk membuat Akun Google



Tabel Silabus Komputer Dasar


Senin

Syukur Q

Saya bersyukur, memiliki kesehatan untuk menulis artikel ini. Sementara banyak orang yang tidak bisa duduk tegak, apalalgi menulis artikel.
Saya bersyukur, memiliki mata yang bisa membantu saya dalam membaca dan menulis. Sementara banyak orang yang tidak bisa melihat.
Saya bersyukur, sering “diganggu” oleh My brother and sister
Saya bersyukur ….
Ini baru seputar menulis artikel. Begitu banyak nikmat yang telah Allah berikan kepada saya dan begitu juga kepada Anda yang membaca artikel ini. Inilah maksud saya, jika diteruskan, tidak akan pernah tamat untuk menyebutkan nikmat yang telah Allah berikan kepada kita.
Dan jika kamu menghitung-hitung nikmat Allah, niscaya kamu tak dapat menentukan jumlahnya. Sesungguhnya Allah benar-benar Maha Pengampun lagi Maha Penyayang. (QS. An Nahl: 18)
Maka, pantaslah jika Allah bertanya kepada kita,
Maka nikmat Tuhan kamu yang manakah yang kamu dustakan? (QS. Ar Rahman:13)
Sungguh aneh orang yang tidak mau bersyukur. Sungguh rugi orang tidak mau bersyukur. Padahal, jika kita bersyukur, nikmat kita akan bertambah.
Dan (ingatlah juga), tatkala Tuhanmu memaklumkan; “Sesungguhnya jika kamu bersyukur, pasti Kami akan menambah (nikmat) kepadamu, dan jika kamu mengingkari (nikmat-Ku), maka sesungguhnya azab-Ku sangat pedih”. (QS. Ibrahim:7)
Mudah-mudahan, artikel motivasi ini bisa menambah kepekaan kita melihat nikmat Allah dan menjadikan kita sebagai hamba yang pandai bersyukur.

Kamis

Sejarah Radiologi

Wilhelm Conrad Roentgen seorang ahli fisika di Universitas Wurzburg, Jerman, pertama kali menemukan sinar Roentgen pada tahun 1895 sewaktu melakukan eksperimen dengan sinar katoda. Saat itu dia melihat timbulnya sinar fluoresensi yang berasal dari krostal barium platinosianida dalam tabung Crookes-Hittorf yang dialiri listrik. Ia segera menyadari bahwa fenomena ini merupakan suatu penemuan baru sehingga dengan gigih ia terus menerus melanjutkan penyelidikannya dalam minggu-minggu berikutnya. Tidak lama kemudian ditemukanlah sinar yang disebutnya sinar baru atau sinar X. Baru di kemudian hari orang menamakan sinar tersebut sinar Roentgen sebagai penghormatan kepada Wilhelm Conrad Roentgen.


Wilhelm Conrad Roentgen


Penemuan Roentgen ini merupakan suatu revolusi dalam dunia kedokteran karena ternyata dengan hasil penemuan itu dapat diperiksa bagian-bagian tubuh manusia yang sebelumnya tidak pernah dapat dicapai dengan cara-cara konvensional. Salah satu visualisasi hasil penemuan Roentgen adalah foto jari-jari tangan istrinya yang dibuat dengan mempergunakan kertas potret yang diletakkan di bawah tangan istrinya dan disinari dengan sinar baru itu.


Foto Tangan Istri Roentgen


Roentgen dalam penyelidikan selanjutnya segera menemukan hampir semua sifat sinar Roentgen, yaitu sifat-sifat fisika dan kimianya. Namun ada satu sifat yang tidak sampai diketahuinya, yaitu sifat biologik yang dapat merusak sel-sel hidup. Sifat yang ditemukan Roentgen antara lain bahwa sinar ini bergerak dalam garis lurus, tidak dipengaruhi oleh lapangan magnetic dan mempunyai daya tembus yang semakin kuat apabila tegangan listrik yang digunakan semakin tinggi, sedangkan di antara sifat-sifat lainnya adalah bahwa sinar ini menghitamkan kertas potret. Selain foto tangan istrinya, terdapat juga foto-foto pertama yang berhasil dibuat oleh Roentgen ialah benda-benda logam di dalam kotak kayu, diantaranya sebuah pistol dan kompas.

Setahun setelah Roentgen menemukan sinar-X, maka Henri Becquerel, di Perancis, pda tahun 1895 menemukan unsur uranium yang mempunyai sifat hampir sama. Penemuannya diumumkan dalam kongres Akademi Ilmu Pengetahuan Paris pada tahun itu juga. Tidak lama kemudian, Marie dan Piere Curie menemukan unsur thorium pada awal tahun 1896, sedangkan pada akhir tahun yang sama pasangan suami istri tersebut menemukan unsur ketiga yang dinamakan polonium sebagai penghormatan kepada negara asal mereka, Polandia. Tidak lama sesudah itu mereka menemukan unsur radium yang memancarkan radiasi kira-kira 2 juta kali lebih banyak dari uranium.

Baik Roentgen yang pada tahun-tahun setelah penemuannya mengumumkan segala yang diketahuinya tentang sinar X tanpa mencari keuntungan sedikitpun, maupun Marie dan Piere Curie yang juga melakukan hal yang sama, menerima hadiah Nobel. Roentgen menerima pada tahun 1901, sedangkan Marie dan Piere Curie pada tahun 1904. Pada tahun 1911, Marie sekali lagi menerima hadiah Nobel untuk penelitiannya di bidang kimia. Hal ini merupakan kejadian satu-satunya di mana seseorang mendapat hadiah Nobel dua kali. Setelah itu, anak Marie dan Piere Curie yang bernama Irene Curie juga mendapat hadiah Nobel dibidang penelitian kimia bersama dengan suaminya, Joliot pada tahun 1931.

Sebagaimana biasanya sering terjadi pada penemuan-penemuan baru, tidak semua orang menyambutnya dengan tanggapan yang baik. Ada saja yang tidak senang, malahan menunjukkan reaksi negative secara berlebihan. Suatu surat kabar malamdi London bahkan mengatakan bahwa sinar baru itu yang memungkinkan orang dapat melihat tulang-tulang orang lain seakan-akan ditelanjangi sebagai suatu hal yang tidak sopan. Oleh karena itu, Koran tersebut menyerukan kepada semua Negara yyang beradab agar membakar semua karya Roentgen dan menghukum mati penemunya.

Suatu perusahaan lain di London mengiklankan penjualan celana dan rok yang tahan sinar-X, sedangkan di New Jersey, Amerika Serikat, diadakan suatu ketentuan hokum yang melarang pemakaian sinar-X pada kacamata opera. Untunglah suara-suara negatif ini segera hanyut dalam limpahan pujian pada penemu sinar ini, yang kemudian ternyata benar-benar merupakan suatu revolusi dalam ilmu kedokteran.

Seperti dikatakan di atas, Roentgen menemukan hampir semua sifat fisika dan kimia sinar yang diketahuinya, namun yang belum diketahui adalah sifat biologiknya. Sidat ini baru diketahui beberapa tahun kemudian sewaktu terlihat bahwa kulit bias menjadi berwarna akibat penyinaran Roentgen. Mulai saat itu, banyak sarjana yang menaruh harapan bahwa sinar ini juga dapat digunakan untuk pengobatan. Namun pada waktu itu belum sampai terpikirkan bahwa sinar ini dapat membahayakan dan merusak sel hidup manusia. Tetapi lama kelamaan yaitu dalam dasawarsa pertama dan kedua abad ke-20, ternyata banyak pionir pemakai sinar Roentgen yang menjadi korban sinar ini.

Kelainan biologik yang diakibatkan oleh Roentgen adalah berupa kerusakan pada sel-sel hidup yang dalam tingkat dirinya hanya sekedar perubahan warna sampai penghitam kulit, bahkan sampai merontokkan rambut. Dosis sinar yang lebih tinggi lagi dapat mengakibatkan lecet kulit sampai nekrosis, bahkan bila penyinaran masih saja dilanjutkan nekrosis itu dapat menjelma menjadi tumor kulit ganas atau kanker kulit.

Selama dasawarsa pertama dan kedua abad ini, barulah diketahui bahwa puluhan ahli radiologi menjadi korban sinar Roentgen ini. Nama-nama korban itu tercantum dalam buku yang diterbitkan pada waktu kongres Internasional Radiologi tahun 1959 di Munich: Das Ehrenbuch der Roentgenologen und Radiologen aller Nationen.

Salah seorang korban diantara korban sinar Roentgen ini ialah dr.Max Hermann Knoch, seorang Belanda kelahiran Paramaribo yang bekerja sebagai ahli radiologi di Indonesia. Beliau adalah dokter tentara di Jakarta yang pertama kali menggunakan alat Roentgen maka ia bekerja tanpa menggunakan proteksi terhadap radiasi, seperti yang baru diadakan pada tahun lima puluhan. Misalnya pada waktu ia membuat foto seorang penderita patah tulang, anggota tubuh dan tangannya pun ikut terkena sinar, sehingga pada tahun 1904, dr.Knoch telah menderita kelainan-kelainan yang cukup berat, seperti luka yang tak kunjung sembuh pada kedua belah tangannya. Pada tahun 1905 beliau dikirim kembali ke Eropa untuk mengobati penyakitnya ini, namun pada tahun 1908 kembali lagi ke Indonesia dan bekerja sebagai ahli radiologi di RS.Tentara, Surabaya, sampai tahun 1917. Pada tahun 1924 ia dipindahkan ke Jakarta, dan bekerja di rumah sakit Fakultas Kedokteran sampai akhir hayatnya. Akhirnya hamper seluruh lengan kiri dan kanannya menjadi rusak oleh penyakit yang tak sembuh yaitu nekrosis, bahkan belakangan ternyata menjelma menjadi kanker kulit. Beliau sampai di amputasi salah satu lengannya, tetapi itupun tidak berhasil menyelamatkan jiwanya. Pada tahun 1928, dr.Knoch meninggal dunia setelah menderita metastasis luas di paru-parunya.

Setelah diketahui bahwa sinar Roentgen dapat mengakibatkan kerusakan-kerusakan yang dapat berlanjut sampai berupa kanker kulit bahka leukemia, maka mulailah diambil tindakan-tindakan untuk mencegah kerusakan tersebut. Pada kongres Internasional Radiologi di Kopenhagen tahun 1953 dibentuk The International Committee on Radiation Protection, yang menetapkan peraturan-peraturan lengkap untuk proteksi radiasi sehingga diharapkan selama seseorang mengindahkan semua petunjuk tersebut, maka tidak perlu khawatir akan bahaya sinar Roentgen.

Diantara petunjuk-petunjuk proteksi terhadap radiasi sinar Roentgen tersebut adalah: menjauhkan diri dari sumber sinar, menggunakan alat-alat proteksi bila harus berdekatan dengan sinar seperti sarung tangan, rok, jas, kursi fluoroskopi, berlapis timah hitam (Pb) dan mengadakan pengecekan berkala dengan memakai film-badge dan pemeriksaan darah, khususnya jumlah sel darah putih (leukosit).

Di Indonesia penggunaan sinar Roentgen cukup lama. Menurut laporan, alat Roentgen sudah digunakan sejak tahun 1898 oleh tentara kolonial Belanda dalam perang di Aceh dan Lombok. Selanjutnya pada awal abad ke-20 ini, sinar Roentgen terutama digunakan di Rumah sakit Militer dan rumah sakit pendidikan dokter di Jakarta dan Surabaya. Ahli radiologi Belanda yang bekerja pada Fakultas Kedokteran di Jakarta pada tahun-tahun sebelum perang dunia ke II adalah Prof.B.J. Van der Plaats yang jugatelah memulai melakukan radioterapi disamping radiodiagnostik.

Orang Indonesia yang telah menggunakan sinar Roentgen pada awal abad ini adalah R.M. Notokworo yang lulus dokter di Universitas Leiden, Belanda, pada tahun 1912. Beliau mula-mula bekerja di Semarang, lalu pada permulaan masa pendudukan Jepang dipindahkan ke Surabaya. Pada tahun 1944 ia meninggal secara misterius, dibunuh oleh tentara Jepang.

Pada tahun yang sama dengan penemuan sinar Roentgen, lahirlah seorang bayi di pulau Rote, NTT, yang bernama Wilhelmus Zacharias Johannes, yang dikemudian hari berkecimpung di bidang radiologi.

Pada akhir tahun dua puluhan waktu berkedudukan di kota Palembang, dr. Johannes jatuh sakit cukup berat sehingga dianggap perlu dirawat untuk waktu yang cukup lama di rumah sakit CBZ Jakarta. Penyakit yang diderita ialah nyeri pada lutut kanan yang akhirnya menjadi kaku (ankilosis). Selama berobat di CBZ Jakarta, beliau sering diperiksa dengan sinar Roentgen dan inilah saat permulaan beliau tertarik dengan radiologi. Johannes mendapat brevet ahli radiologi dari Prof. Van der Plaats pada tahun 1939. Beliau dikukuhkan sebagai guru besar pertama dalam bidang radiologi Fakultas Kedokteran UI pada tahun 1946.

Pada tahun 1952 Johannes diberi tugas untuk mempelajari perkembangan-perkembangan ilmu radiologi selama beberapa bulan di Eropa. Beliau berangkat dengan kapal Oranje dari Tanjung Priok. Pada saat keberangkatan, beberapa anggota staf bagian radiologi, yaitu dr. Sjahriar Rasad, Ny. Sri Handoyo dan Aris Hutahuruk alm. turut mengantar beliau. Prof. Johannes meninggal dunia dalam melakukan tugasnya di Eropa pada bulan September 1952. selain menunjukkan gejala serangan jantung, beliau juga menderita Herpes Zoster pada matanya, suatu penyakit yang sangat berbahaya.

Dalam usaha untuk menempatkan nama beliau sebagai tokoh radiologi kaliber dunia, maka pada kongres radiologi internasional tahun 1959 di Munich, delegasi Indonesia di bawah pimpinan Prof.Sjahriar Rasad berhasil menempatkan foto beliau di antara Martyrs of Radiology yang ditempatkan di suatu ruangan khusus kongres tersebut. Tahun 1968 beliau dianugerahkan gelar Pahlawan Kemerdekaan oleh Pemerintah, walaupun telah wafat. Dan pada tahun 1978 jenazah almarhum dipindahkan ke Taman Pahlawan Kalibata.

Almarhum tidak saja dianggap sebagai Bapak Radiologi bagi para ahli radiologi, melainkan juga oleh semua orang yang berkecimpung dalam radiologi termasuk radiographer. Beliau juga adalah Bapak Radiologi dalam bidang pendidikan dan keorganisasian. Beliaulah yang mengambil prakarsa untuk mendirikan Sekolah Asisten Roentgen pada tahun 1952, dan beliaulah yang mulai mendirikan organisasi yang mendahului Ikatan Ahli Radiologi Indonesia (IKARI) yaitu seksi radiologi IDI pada tahun 1952.

Pada tahun 1952 segelintir ahli radiologi yang bekerja di RSUP yaitu G.A.Siwabessy, Sjahriar Rasad, dan Liem Tok Djien, mendirikan Sekolah Asisten Roentgen karena dirasakan sangat perlunya tenaga asisten Roentgen yang berpendidikan baik.

Pada tahun 1970 Sekolah Asisten Roentgen yang dahulunya menerima murid lulusan SMP ditingkatkan menjadi Akademi Penata Roentgen (APRO) yang menerima siswa lulusan SMA.

Dengan semakin banyaknya jumlah asisten Roentgen yang berpengalaman, bahkan beberapa diantaranya mendapat pendidikan tambahan di luar negeri, maka pelajaran-pelajaran di APRO sebagian besar sudah dapat diberikan oleh para asisten Roentgen dan hanya Direktur sajalah yang berpangkat ahli radiologi karena merupakan syarat bagi suatu akademi. Para ahli radiologi sangat berkepentingan dalam perkembangan dan peningkatan mutu para asisten Roentgen, yang sekarang nama resminya menjadi penata Roentgen.

Pengujian SPEED FILM

Latar Belakang
Setiap film yang dibuat oleh perusahaan pembuat film, memiliki respon yang berbeda-beda terhadap eksposi yang mengenainya baik oleh cahaya tampak maupun radiasi seperti sinar-x. Akibat respon yang berbeda inilah, maka muncul istilah film speed (kecepatan film).

Dasar Teori
Definisi Speed Film (Kecepatan film) adalah respon film terhadap eksposi baik oleh cahaya tampak maupun sinar-x yang ditandai dengan adanya densitas pada film, semakin cepat film menghitam, maka semakin tinggi kecepatan film tersebut. Menurut ANSI (American National Standards Institute), Speed film x-ray di definisikan sebagai eksposi yang dibutuhkan oleh film untuk mencapai densitas sebesar 1. Jadi film yang mencapai densitas sebesar 1, maka film tersebut telah mencapai persyaratan speed film. Seandainya ada beberapa merk film yang ingin dibandingkan kecepatannya, maka film yang terlebih dahulu mencapai nilai densitas sebesar 1 (setelah diberi perlakuan yang sama) maka film tersebut dikatakan film dengan kecepatan paling tinggi diantara film yang dibandingkan tersebut.



Alat dan Bahan

1. Film yang akan dibandingkan speed nya (harus lebih dari satu merk)
2. Densitometer (jika memungkinkan yang digital)
3. Stepwedge yang berlisensi RMI
4. Pesawat Sinar-x
5. Automatic Processor
6. Kertas milimeter block

Prosedur pengujian

1. Stepwedge di ekspose dengan menggunakan film merk A (dg kaset merk A juga) dan film merk B (dg kaset merk B juga).





2. Eksposi dilakukan dengan menggunakan faktor eksposi yang sama dan pesawat sinar-x yang sama juga.

3. Setelah itu film diproses dengan menggunakan prosesing otomatis yang sama, pada waktu yang sama.

4. Setelah diproses, ukur masing-masing step pada gambaran stepwedge yang tampak dengan menggunakan Densitometer.





5. Setelah di dapat hasilnya, buat kurva karakteristik dari kedua gambaran stepwedge tsb dalam satu grafik.

6. Setelah jadi kurva karakteristiknya, tarik garis ke kanan, dari nilai densitas = 1,00 + Densitas dari Basic Fog. Kurva yang pertama terkena garis tadi merupakan film yang speednya paling tinggi.

Contoh Hasil Pengujian
Pengujian kali ini dilakukan di Laboratorium Radiografi Program Studi D III Teknik Radiodiagnostik dan Radioterapi Universitas Baiturrahmah, Padang. Eksposi yang dilakukan menggunakan kV = 60 dan mAs = 8, Pesawat Sinar-X Merk Siemens Multimobile 150 mA dan Automatic Processing merk Agfa Shallow Tank dengan kecepatan 90 detik. Film yang digunakan dua merk yaitu Agfa dan Kodak (keduanya green sensitif, medium speed)





Analisis Data Menggunakan Kurva Karakteristik



Dari kurva karakteristik yang dihasilkan dari data pengujian film Agfa dan Kodak di dapat kesimpulan bahwa Film Kodak mempunyai speed film lebih tinggi dibandingkan dengan Film Agfa. Namun jika dilihat dari Densitas Maksimum yang dihasilkan, Film Agfa memiliki Densitas maksimum lebih tinggi dibandingkan dengan densitas maksimum yang dihasilkan Film Kodak.
Berdasarkan pengalaman, faktor eksposi yang digunakan untuk Film Kodak biasanya lebih rendah dibandingkan dengan Agfa, namun Hasil radiograf Film Agfa tampak lebih jelas kontrasnya jika dibandingkan Film Kodak yang jika dilihat gambarannya cenderung berwarna hitam kecoklatan.

Cardiothoracic Ratio (CTR)

ada pemeriksaan radiologi khususnya Thorax, kadang-kadang ditemukan dimana ukuran bayangan jantung terlihat lebih besar dari biasanya. Meskipun terlihat lebih besar dari biasanya, kita tidak bisa langsung mengatakan bahwa jantung tersebut mengalami pembesaran atau biasa disebut Cardiomegally. Untuk menentukan apakah jantung tersebut mengalami pembesaran, maka diperlukan sebuah perhitungan yang disebut dengan Cardiothoracic Ratio, mau tahu bagaimana pengukurannya....

Sebelum kita mulai dengan Cardiothoracic Ratio, mari kita mulai dari anatomi jantung terlebih dahulu.

Anatomi dan Fisiologi Jantung

Jantung adalah pusat dari sistem kardiovaskuler yang terletak dalam rongga dada diantara 2 paru. Jantung dilapisi oleh sebuah kantung disebut perikardium (kantong fibroserosa), fungsinya adalah membatasi pergerakan jantung dan menyediakan pelumas. Perikardium terletak dalam mediastinum medius, posterior terhadap corpus sterni dan kartilago costae II sampai VI.

Perikardium terdiri dari :
1. Perikardium fibrosum → terletak di bagian luar dan terikat kuat

2. Perikardium serosum (bagian dalam ) terdiri dari :
- lamina parietalis berdekatan dengan perikardium fibrosum
- Lamina visceralis berhubungan erat dengan jantung = epikardium
Ruang diantara lamina parietalis dan visceralis disebut cavitas perikardiak, yang berisi cairan perikardial, berfungsi sebagai pelumas.



Batas jantung
- Batas kanan oleh atrium kanan
- Batas kiri oleh auricula sinistra
- Bawah oleh ventrikel sinistra

Ruang-ruang jantung → dibagi oleh septum vertikal menjadi empat bagian atrium dextra, atrium sinistra, ventrikel dextra dan ventrikel sinistra.

Otot jantung terdiri dari tiga lapisan
1. Endokardium (bagian dalam)
2. Miokardium
3. Epikardium

Otot atrium lebih tipis dibandingkan otot ventrikel. Antara atrium kanan dan ventrikel kanan terdapat katup trikuspidalis (terdiri dari tiga daun katup). Antara atrium kiri dengan ventrikel kiri terdapat katup mitralis ( terdiri dari dua daun katup).

Antara ventrikel kiri dan aorta dan ventrikel kanan dengan arteri pulmonalis terdapat katup semilunaris ( terdiri dari tiga daun katup). Gerakan katup pada dasarnya adalah pasif, membuat aliran darah menuju kesatu arah.

Otot atrium dan ventrikel berkontraksi dengan cara yg mirip dengan otot rangka, hanya kontraksi otot jantung lebih lama. Umumnya jantung berkontraksi secara ritmik sekitar 70 – 90 denyut/menit pada orang dewasa. Konduksi jantung terdiri atas otot jantung khusus yang terdapat pada nodus sinuatrialis, nodus atrioventrikularis, fasikulus atrioventrikularis (sinistra & dextra) dan sub-endokardial serabut purkinje

Nodus sinoatrial terletak pada dinding atrium dextra dibagian atas tepat disebelah kanan muara vena cava superior. Nodus atrioventrikular terletak di bagian bawah tepat diatas tempat perlekatan septum trikuspidalis. Fasciculus atrioventrikular ( berkas his) merupakan jalur serabut otot jantung yang menghubungkan miokardium atrium dan ventrikel terdiri dari cabang berkas kanan (right bundle branch) dan cabang berkas kiri ( left bundle branch)

Teknik Radiografi Thorax

Untuk mendapatkan gambaran dari bayangan jantung, kita membutuhkan sebuah foto thorax dengan proyeksi Postero Anterior (PA). Untuk mendapatkan foto thorax yang baik, maka harus mengikuti Teknik Radiografi Thorax yang benar.

Posisi Pasien
Pasien diupayakan untuk berdiri (erect) membelakangi tabung sinar-x. Hal ini dikarenakan, saat berdiri, maka semua bentuk anatomi dari Paru-Paru dan Jantung berada pada posisi yang normal. Jika foto thorax terutama untuk melihat bayangan jantung dilakukan supine (tidur terlentang), maka gambaran jantung akan terlihat lebih besar jika dibandingkan dengan berdiri. Jantung itu ibarat balon yang diisi dengan air, sehingga apabila diposisikan supine akan melebar ke samping. Lagipula dengan posisi pasien yang erect, foto thorax akan memberikan informasi tambahan yang sebenarnya, seandainya saja pada rongga thorax pasien terdapat cairan. Dengan berdiri, cairan akan berada di bawah (sesuai dengan sifat air yang selalu menempati tempat terbawah), sehingga mudah di diagnosa.


Posisi Objek

Kedua punggung tangan diletakkan di atas pinggang masing-masing. Kedua shoulder terletak pada bidang yang sama supaya thorax simetris antara kanan dan kiri. Kepala di ekstensikan dan dagu diletakkan di atas kaset atau bucky stand. Kedua siku di dorong kedepan supaya bagian anterior dada menempel sempurna di kaset.

Central Ray dan Central Point

Central Ray di arahkan tegak lurus horizontal terhadap kaset dan di pusatkan setinggi thorakal VI.





Perhitungan Cardiothoracic Ratio (CTR)

Setelah foto thorax PA sudah jadi, maka untuk membuat perhitungan CTR nya kita harus membuat garis-garis yang akan membantu kita dalam perhitungan CTR ini.
1. Buat garis lurus dari pertengahan thorax (mediastinum) mulai dari atas sampai ke bawah thorax.

2. Tentukan titik terluar dari kontur jantung sebelah kanan dan namakan sebagai titik A.

3. Tentukan titik terluar dari kontur jantung sebelah kiri dan namakan sebagai titik B.

4. Buat garis lurus yang menghubungkan antara titik A dan B

5. Tentukan titik terluar bayangan paru kanan dan namakan sebagai titik C.

6. Buat garis lurus yang menghubungkan antara titik C dengan garis mediastinum.

7. Perpotongan antara titik C dengan garis mediastinum namakan sebagai titik D

Jika foto thorax digambar dengan menggunakan aturan di atas maka akan di dapatkan foto thorax yang sudah di beri garis seperti di bawah ini :


Setelah dibuat garis-garis seperti di atas pada foto thorax, selanjutnya kita hitung dengan menggunakan rumus perbandingan sebagai berikut :



Ketentuan : Jika nilai perbandingan di atas nilainya 50% (lebih dari/sama dengan 50% maka dapat dikatakan telah terjadi pembesaran jantung (Cardiomegally)
Contoh :
Pada sebuah foto thorax, setelah dibuat garis-garis untuk menghitung Cardiothoracic Ratio, di dapat nilai-nilai sebagai berikut :
Panjang garis A ke B = 10 cm
Panjang garis C ke D = 15 cm
Dari nilai-nilai di atas, apakah jantun pada pasien tersebut dapat dikategorikan sebagai Cardiomegally atau tidak?
Jawab :
Sesuai dengan rumus perbandingan yang telah dijelaskan, maka kita masukan nilai-nilai tersebut di atas.



karena nilai ratio nya melebihi 50%, maka jantung pasien tersebut dapat dikategorikan Cardiomegally (terjadi pembesaran jantung).

Beberapa Penyebab Cardiomegally

1. Atrial Septal Defect (ASD)
ASD adalah kelainan pada sekat atrium. Ini merupakan kelainan bawaan, dimana 80% - 90% terjadi pada orang dewasa. Wanita 3 kali lebih banyak daripada laki-laki yang memiliki kelainan ASD ini. Pada kasus ASD terjadi pembesaran pada ventrikel kanan dan seluruh bagian dari arteri pulmonaris. Atrium kanan juga mengalami pembesaran, namun pada foto thorax sulit dibedakan dengan pembesaran pada ventrikel kanan.

Contoh Foto Thorax Pada Kasus ASD



2. Mitral Stenosis
Mitral Stenosis merupakan akibat dari rheumatic carditis yang terjadi 5 sampai 10 tahun sebelumnya. Mitral Stenosis akan memperlihatkan pembesaran bayangan jantung dikarenakan terjadi oedema pada arteri pulmonaris. Awalnya rheumatic Mitral Stenosis didistribusikan oleh arteri pulmonaris ke lobus bagian atas dari paru-paru. Kemudian arteri pulmonaris membesar seiring dengan terjadinya hipertensi pada arteri pulmonaris. Pada foto thorax akan tampak membesar atrium kiri, ventrikel kanan dan cabang-cabang dari arteri pulmonaris



3. Left Ventricular Aneurysm (LVA)
LVA adalah aneurisma yang terjadi pada ventrikel kiri. Hal ini disebabkan karena terjadi pembesaran pada ventrikel kiri. Ventrikel kiri ini membesar akibat beberapa penyakit seperti TB, Kalsifikasi Infark atau Asbestos Disease.